
Current Status of Geant4 MultiThreading
– How it is designed and implemented
– How to convert Geant4 to Geant4MT

Xin Dong and Gene Cooperma
High Performance Computing Lab

College of Computer and Information Science
Northeastern University

Boston, Massachusetts 02115
USA

{gene,xindong}@ccs.neu.edu

Geant4 MultiThreading Overview

Geant4 MultiThreading (Geant4MT)

• adopt the same event-level parallelism as the prior distributed memory
parallelization has done

• replacek independent copies of the Geant4 process with an equivalent
single process withk threads

• uses the many-core machine in a memory-efficient scalable manner

• modify both the source code of the Geant4 kernel and the source code of
Geant4 applications

– the code modification for thread safety

– the code modification for memory footprint reduction

– the code for the worker thread initialization

– the thread private malloc library

– the thread safe CLHEP interface

– the parallelization frame code for applications

Geant4MT Thread Safety

Replace the following two Geant4 processes

DataText Heap Stack

DataText StackHeap
Process 1

Process 2

with one process with two Geant4 threads

Data
Thread 1 Thread 2

Heap TLS Stack TLS Stack
Text Private data Private data

Geant4 detector is replicated by each thread. This leads to athread-safe
usage of C++ STL.

Geant4MT Memory Footprint Reduction

Implement the following data model

DetectorData
Thread 1 Thread 2

Heap TLS Stack TLS Stack
Text DetectorDetector

Because some detector data structure is changed, initialization must be
changed correspondingly for threads.

Master Initialization

Create Threads

Barrier Barrier
Multithreaded Version

Sequential Program

V.S.

DoEventLoop

Event n

Worker Initialization

Malloc: Central Heap Performance Bottleneck

Even if memory allocation/deallocation consists of 10 to 20instructions,
their cost is not negligible for thread-level parallelism.

Data
Thread 1 Thread 2

Heap TLS Stack TLS Stack
Text DetectorDetectorDetector

• memory chunks are maintained using a “boundary tag” method

– allocation/deallocation generates random accesses to memory address
space and more cache misses

• POSIX standard requires memory allocator to be thread safe

– locks/unlocks in addition to cache coherence misses

• C++ string and STL containers implementation

– intensive dynamic memory allocations and deallocations

Thread Private Allocator (TPMalloc)

Make the malloc state (arena) thread local and force each worker thread to
mmap a large thread private region.

DetectorDetectorDataText Detector

Private heap Private heap

Thread 1 Thread 2

TLS Stack TLS Stack

Shared central heap

If a thread allocates memory, then the same thread will free it.

For the simulation phase when a huge amount of navigation history data is
dynamically allocated.

Those history data is used temporarily and freed by the same thread.

Segregated thread private regions in the heap and completely lock-free

Thread Safe CLHEP Interface

If Geant4 threads invoke the same random number generator engine, then
reproducibility is not guaranteed.

Case 1

r1 r2 r3 r4 r5 r6
Thread 2
Thread 1

Random number generator engine

r1 r2 r3 r4 r5 r6

Case 2

Random number generator engine

Case1: thread 1 got r1, r3, r5; thread 2 got r2, r4, r6

Case2: thread 1 got r1, r4, r5; thread 2 got r2, r3, r6

Since the CLHEP static interface is not stateless, G4MTHepRandom is
implemented for Geant4MT to achieve reproducibility

• A multithreaded HepRandom class used as a per thread singleton

• The parent class for distribution classes leveraged from CLHEP

This change allows the Geant4MT to compile against the original CLHEP
maintained outside of the Geant4 kernel.

Parallelization Frame Code for Applications

Geant4 applications are multithreaded in a fashion similarto the ParGeant4
for distributed memory clusters.

• A new main function and a thread function as wrappers

• Some minor change in the real application main function to coordinate
master phase and worker phase initialization

• A parallel run manager and some modification in the DoEventLoop
function to spawn worker threads

• User-defined organization for the parallel simulation of events and the
aggregation for simulation results

• A child class for the class G4coutDestination, which has oneper thread
instance to redirect the output to a thread private file. Thisinstance is
associated to G4coutbuf and G4cerrbuf for output demangle.

• Debugging tools for errors introduced by the Geant4MT: incorrectly
initialized worker threads; and data race generated by writing to some
shared data.

Geant4MT Threads Life Time

GeometryAnd
SlaveBuild

PhysicsVector

GeometryAnd
PhysicsVector

SlaveDestroy

Master Execute As Usual

ParallelRunMgr (Master)

DoEventLoop

Create Threads

Slave copy thread private part

LV, PV, Rep, Par, Reg, Mat, PhyVCache
For each split class such as

Replica thread private data initialization

Clone solids for each parametrised

Slave Execute With Slave Flag

ParallelRunMgr (Slave)

DoEventLoop(Slave)

EndOfDoEventLoop

Join

Geant4MT Tools for Implementation Support

• Transformation for Thread Safety (TTS)

1. make each global or static variable thread-local

2. independent threads lead to absolute thread-safety: anythread can call
any function. No data race!

• Transformation for Memory Reduction (TMR)

1. relatively read-only data: written to during its initialization and read-
only during the computation of each task.

2. share relatively read-only data, and replicate other data

• Debugging Tools

1. compare the original program with the multi-threaded version

2. runtime correctness: to serialize updates to shared data

• Malloc Non-standard Extension using a Thread-Private Heap (TPMalloc)

• Avoidance of Cache Coherence Bottlenecks

TTS Architecture

AST

AST

C program

C++ program

Generic Gimple SSA RTL

Machine CodePlug−inPatched Parser

Variable Privatization

• Patch some code in C++ parser to recognize: global declarations and
corresponding extern declarations; and static declarations

• Variable privatization is implemented via the ANSI C/C++ keyword
thread (since C99)

• LLVM Clang compiler supports plug-ins very well, which leads to a
portable solution for the maintenance of TTS transformed program

Transformation for Memory Reduction (TMR)

Is a large array of object instances relatively read only?���������������������������������

���������������������������������

���������������������������������

���������������������������������

���������������������������������

���������������������������������

���������������������������������

���������������������������������

���������������������������������

���������������������������������

���������������������������������

���������������������������������

���������������������������������

��������������������������������������
�����
�����
�����

�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����
�����

�����
�����
�����
�����

Instance 0Instance 0Text (code) Static/Global variables

Heap

Instance 0 Instance 1 Instance 2

Preallocated and write protected for read write field recognition

Put all sharable instances into a pre-allocated region in the heap via

• overloading the “new” method and the “delete” method

0 1 2 3 4 5

10 2 3 4 5 6
Spawn

Non−violation

ATTACH CONT CONT

RetrySIGUSR1SIGFAULTSIGFAULT

Violation

CONT

SIGUSR1

DETACH

Inferior

superior

The superior takes advantage of memory write-protection and directs the
execution of the inferior: remove “w”; catch segfault; re-enable “w” and
retry the instruction.

TMR Implementation Example

If those object instances are relatively read-only, just share them. Otherwise,
reorganize the data structure as follows.

class volume thread RWt *rw array;
{ class volume{

RWt rw; int instanceID;
RD t rd; RD t rd;}

} #define rw (rwarray[instanceID])
thread vector<volume*> store; vector<volume*> store;

Corresponding Data Model

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

������
������
������
������
������

������
������
������
������
������

Text (code) Static/Global variables

8 2 6

Thread Local Storage Stack Thread Local Storage Stack

RW−Field−Pointer RW−Field−Pointer

Instance ID Instance ID

RW−Field 351
2

Instance ID
10

Thread Worker 1 Thread Worker 2

Instance ID 0 1 2 0 1 2

Heap

Geant4MT Sharable Classes

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�
��
��
��
��

��
��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
������
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

Thread Private

Split Sharable

Sharable

RunMgr

EventMgr

TrackingMgr

SteppingMgr

G4VProcess

VEMProcess
MSC

PhysicsTable

PhysicsVectorCache

G4Material

G4Element

G4VPhysicalVolume

G4LogicalVolume
Replica

ParamVolPlacement

RunMgr Kernel

PTable

IonTable

G4Particle

Solid

Region

G4ProcessMgr

Bisimulation: Debug for Single-Thread Correctness

Because some classes are split, initialization must be changed correspond-
ingly for threads. Bugs could be introduced into the initialization code.

Task Processing

Master Initialization

Create Threads

Worker Initialization

Barrier Barrier

Step n

Multithreaded Version

Sequential Program

V.S.

In a similar spirit to proof by bisimulation, debug by comparison

• The comparison verifies the original program and the multi-threaded
version against whether they behave identically.

• The problematic instruction that leads to a difference is the clue for the
root cause of the bug.

Checkpointed Debug Sessions for Bisimulator

Run-time: Correctness Guarantee

A deeper error: shared “relatively read-only” is changed bytask processing

• Run-time correctness to serialize unintended updates to shared data

– Independence of tasks: Geant4MT’s task-oriented nature

– Memory write-protection

0 1 2 3 4 5

10 2 3 4 5 6
Spawn

Non−violation

ATTACH CONT CONT

RetrySIGUSR1SIGFAULTSIGFAULT

Violation

CONT

SIGUSR1

DETACH

Inferior

superior

– Data Race Coordinator (DRC) recovery policy

∗ thread that updates to shared “relatively read-only” is suspended
∗ remaining threads finish their current task and become quiescent
∗ quiescent threads wait upon the suspended thread to finish

Geant4 MultiThreading – History

• ParGeant4 for cluster: master/worker, event-level, seed per event ...

• October 2007, Geant4 parallelization for many-core CPUs

• January 2008, thread safe Geant4.9.0 via manually changing

• March 2008, transformation tools for thread safety (TTS)

• December 2008, transformation for sharing detector data (TMR)

• April 2009, Geant4MT for Geant4.9.1: performance bottleneck

• July 2009, Geant4MT for Geant4.9.2: performance bottleneck

• October 2009, performance improvement: TPMalloc

• December 2009, performance improvement: Thread Private Output

• March 2010, Debugging tool Bisimulation

• September 2010, Geant4MT for Geant4.9.4.b01

• December 2010, Geant4MT for Geant4.9.4

• March 2011, Geant4MT for Geant4.9.4.p01

Geant4MT for Next Releases I

Generally a three-day work for each release:

• Install a sequential version of the new release

– use patched gcc 4.2.2 and install to another directory -geant4(keep
the source clear)

– turn on debug mode -g and enable GDML

• TMR patch: If patched successfully, shared classes and corresponding
initialization code are not changed much.

• delete /tmp/geant4* and recompile

• TTS

– ./elsa-2005.08.22bG4MT/elsa/geant4mtphase2 /tmp/geant4static

– ./elsa-2005.08.22bG4MT/elsa/geant4mtphase2 /tmp/geant4global

– ./elsa-2005.08.22bG4MT/elsa/geant4mtphase2 /tmp/geant4extern

– ./elsa-2005.08.22bG4MT/elsa/geant4mtphase2

Geant4MT for Next Releases II

• Combine the change in the source directory and the destination directory

– cp G4Integrator.icc
from ./geant4/src/geant4/source/global/HEPNumerics/include
to ./geant4.9.4.b01/source/global/HEPNumerics/include

– cp G4ReferenceCountedHandle.hh
from ./geant4/src/geant4/source/global/management/include
to ./geant4.9.4.b01/source/global/management/include

• TTS may introduce some statements into methods where the transformed
static member is not really used. It derives lots of warnings. To eliminate
compiler warnings:

– change /geant4/src/geant4/config/architecture.gmk
...
CPPFLAGS+ =>> /tmp/Geant4MTWarning2 > & 1

– recompile

– use a script to delete those useless statements following warnings

Geant4MT for Next Releases III

• Patch the CLHEP thread safe interface
RandFlat::shoot G4RandFlat
RandGamma::shoot G4RandGamma
RandBit::shootBit G4RandBit
RandExponential::shoot G4RandExponential
RandFlat::shootArray G4RandFlatArray
RandFlat::shootInt G4RandFlatInt

• Change global/HEPRandom/include/Randomize.hh
#define G4RandFlat G4MTRandFlat::shoot
#define G4RandGamma G4MTRandGamma::shoot
#define G4RandBit G4MTRandBit::shootBit
#define G4RandExponential G4MTRandExponential::shoot
#define G4RandFlatArray G4MTRandFlat::shootArray
#define G4RandFlatInt G4MTRandFlat::shootInt

• Compile applications and test: Parallel A01, B01, ParN02, ParScorer

• Anything wrong, change and retry. Finally, go back to the second step.

What is Patch I

Sharable Class Private Data Manager TemplateInitial 0 ? Additional Processing
G4LogicalVolume G4MTTransitory No
G4VPhysicalVolume G4MTTransitory No

If Replics, SlaveG4PVReplica()
If Parameterised, Solid clone

SlaveG4LogicalVolume(clone)
G4PVReplica G4MTTransitory No
G4ParticleDefinition G4MTTransitoryParticle Yes
G4Region G4MTTransitory Yes
G4Material G4MTTransitory No Per Instance SlaveG4Material()
G4PhysicsVectorCacheG4MTTransitoryPhysicsVectorYes
Thread private fields are indexed by instanceID. Fields and instanceID grow only.
Even if an instance is deleted, its instanceID and thread private fields are still there.
Only ions and physics vectors are allowed to be created within DoEventLoop.
For the reason above, their template is different.
Template methods:
1. AddNew(): grow the array for private fields
2. SlaveCopy(): memory copy of the array for private fields from the master
3. AllocateSlave(): per object offset[i].initialize()
4. FreeSlave(): deallocate the array for private fields

What is Patch II

Initialize physics processes created for the worker

• Change the SetPhysics method for the original G4RunManagerKernel
class

– Skip ConstructParticles

– Process manager will be reinitialized, because it is threadprivate

Initialize physics tables for the class G4VEnergyLossProcess or the class
G4VMultipleScattering

• Change three methods AddProcessManager, BuildPhysicsTable and
PreparePhysicsTable

1. master thread keeps a shadow process manager pointer firstProcess

2. worker thread calls SlaveBuildPhysicsTable(firstProcess).

3. otherwise (*pVector)[j]->BuildPhysicsTable(*particle);

What is Patch III

diff -Naur source/geometry/navigation/src/G4Navigator.cc
patched/source/geometry/navigation/src/G4Navigator.cc

- static G4double fAccuracyForWarning = kCarTolerance,
- fAccuracyForException = 1000*kCarTolerance;
+ static G4double fAccuracyForWarning = kCarTolerance;
+ static G4double fAccuracyForException = 1000*kCarTolerance;

diff -Naur source/graphicsreps/src/BooleanProcessor.src
patched/source/graphicsreps/src/BooleanProcessor.src

- static void setshift(int); //G.Barrand
+ static void setshift(int a shift); //G.Barrand

What is Patch IV

diff -Naur source/processes/cuts/include/G4ProductionCuts.hh
patched/source/processes/cuts/include/G4ProductionCuts.hh

- static const G4ParticleDefinition* gammaDef;
- static const G4ParticleDefinition* electDef;
- static const G4ParticleDefinition* positDef;
+ static G4ParticleDefinition* gammaDef;
+ static G4ParticleDefinition* electDef;
+ static G4ParticleDefinition* positDef;

- static const G4ParticleDefinition* protonDef; // for proton
+ static G4ParticleDefinition* protonDef; // for proton

Questions

Thank You.

